Digital Fabrication With Biomaterials

Living Prototypes is a Collaborative Project on digitally fabricated prototypes for residential buildings using natural materials, developed by three teams of university research centers and industry partners across Europe.

WASP has participated in the project as IAAC‘s industry partner, focusing on the theme of Earth-Based buildings using natural materials and successfully creating Spain’s first 3D-printed building using earth.

The exhibition showcasing the outcomes of the project will be on display at the Aedes Architecture Forum in Berlin from December 10, 2022, to January 25, 2023.

Living Prototypes Digital Fabrication With Biomaterials
Exhibition Opening of Living Prototypes

Project: Living Prototypes
Project coordinator: ANCB The Aedes Metropolitan Laboratory
Exhibition: 10 December 2022 – 25 January 2023, Aedes Architecture Forum
Photo credit:  Erik-Jan Ouwerkerk

Research teams:
BIO-BASED LIFECYCLE MATERIALS – Cellulose Enclosures
CITA – Centre for Information Technology and Architecture, Copenhagen and COBOD International A/S, Copenhagen

NATURAL FIBRE WINDING – Composite Installation in Existing Buildings
ITKE – Institute of Building Structures and Structural Design (ITKE), University of Stuttgart and FibR GmbH, Kernen

LOCAL MATERIALS – 3D-Printed Earth-Based Buildings
IAAC – Institute for Advanced Architecture of Catalonia, Barcelona and WASP, Massa Lombarda

Introduction and aims

Living Prototypes was awarded research funding under the Zukunft Bau funding program of the Federal Institute on Building, Urban Affairs, and Spatial Development (BBSR) and is a collaboration between ANCB and university research centers and industry partners in Germany, Denmark, Spain, and Italy.

  • Three university-industry teams undertook the conception, design, planning, and fabrication of prototypes for everyday living spaces, using digital fabrication techniques and natural materials.
  • The project culminated with an exhibition at Aedes Architecture Forum in December 2022 presenting the fabrication process, the functionality, and the physical appearance of the prototypes.
  • In the exhibition, three separate prototypes made of earth, flax fibre and bioplastic, were brought together in a 1:1 scale installation built around a typical floorplan of a 1-bedroom apartment
Exhibition View of Living Prototypes in Aedes Architecture Forum in Berlin
The exhibition showcasing the outcomes of the project will be on display at the Aedes Architecture Forum in Berlin from December 10, 2022, to December 25, 2022.
Exhibition Closeup of Living Prototypes in Aedes Architecture Forum in Berlin
Exhibition View of Living Prototypes in Aedes Architecture Forum in Berlin

3D Printed Earth by IAAC and WASP

As part of the Living Prototypes project, IAAC and WASP developed TOVA: the first architectural construction in Spain located in the facilities of Valldaura Labs, Barcelona, built with a Crane WASP, the architectural 3D printer. The construction can be completed within weeks using 100% local materials and local labor, zero waste, and a close to virtually zero carbon emission footprint.

The project has been developed by a team of students and researchers from the 3D Printing Architecture (3dPA) postgraduate program of the Institute for Advanced Architecture of Catalonia (IAAC).

Bioplastic prints by CITA and COBOD

Bioplastics are renewable, inexpensive, biodegradable and chemically diverse. Digital data analysis technologies, such as machine learning, make it possible to predict and control the behaviour of these complex materials during and after the printing process.

CITA and COBOD prototype components for interior spaces using two complementary bio-based materials (cellulose and bone glue). These suggest future circular material life cycles in buildings that are made possible by this adaptive manufacturing process.

Bioplastic prints by CITA and COBOD for Living Prototypes
3D-printing of the cellulose prototype at COBOD | 3D-printed cellulose panels interlocked as screen © CITA

Flaxe-Fibre Winding by ITKE and FibR

Robotic coreless fibre winding aims to optimise material efficiency in architectural components by avoiding formwork and material cutoffs. Material use corresponds to structural demands.

ITKE and FibR investigated robotic coreless fibre winding using natural flax fibres. Through the inter-material dialogue with other living prototypes at the Aedes exhibition, the project communicates the relevance of such material systems in future living spaces.

Flaxe-Fibre Winding by ITKE and FibR for Living Prototypes
Raw material for flax fibres | Robotic winding of flax fibre prototype © ITKE-ICD

Architectural 3D printer

Focusing on the theme of Earth-based buildings, WASP and IAAC created TOVA using Crane WASP, a collaborative 3D printing system that can print houses using locally sourced materials, also known as Km 0 materials.

Crane WASP